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Abstract We establish the convergence of a stochastic global optimization algorithm for
general non-convex, smooth functions. The algorithm follows the trajectory of an appro-
priately defined stochastic differential equation (SDE). In order to achieve feasibility of the
trajectory we introduce information from the Lagrange multipliers into the SDE. The analysis
is performed in two steps. We first give a characterization of a probability measure (�) that
is defined on the set of global minima of the problem. We then study the transition density
associated with the augmented diffusion process and show that its weak limit is given by �.

Keywords Stochastic global optimization · Simulated annealing · Stochastic differential
equations · Fokker-Planck equation · Laplace’s method · Projection algorithms

1 Introduction

The global optimization of general smooth functions subject to linear constraints, using a
system of SDEs was discussed in [18]. The main aim of this paper is to extend the method
so that it can be applied to general non-linearly constrained problems. The proposed algo-
rithm has already been used for the solution of portfolio optimization [15], and chance
constrained problems [17]. However, the convergence of the algorithm has not yet been estab-
lished. We address the issue in this paper by providing the theoretical foundations for the
method.

Consider the following general non-linear programming problem:

P∗ = min
x

f (x)

s.t. g(x) = 0. (1.1)
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Where f and g are general non-linear functions. In particular we assume that f : R
n → R,

and g : R
n → R

m are twice continuously differentiable. The feasible region will be denoted
by F .

A well known method for obtaining a solution to an unconstrained optimization problem
is to consider the following Ordinary Differential Equation (ODE):

d X (t) = −∇ f (X (t))dt. (1.2)

By studying the behavior of X (t) for large t , it can be shown that X (t) will eventually
converge to a stationary point of the unconstrained problem. A review of, so called, contin-
uous-path methods can be found in [20]. More recently, application of this method to large
scale problems was considered by Li-Zhi et al. [12]. A deficiency of using (1.2) to solve opti-
mization problems is that it will get trapped in local minima. In order to allow the trajectory to
escape from local minima, it has been proposed by various authors (e.g. [1,4,6,7,11]) to add
a stochastic term that would allow the trajectory to “climb” hills. One possible augmentation
to (1.2) that would enable us to escape from local minima is to add noise. One then considers
the diffusion process:

d X (t) = −∇ f (X (t))dt + √
2T (t)d B(t). (1.3)

Where B(t) is the standard Brownian motion in R
n . It has been shown in [4,6,7], under

appropriate conditions on f , that if the annealing schedule is chosen as follows:

T (t) �
c

log(2 + t)
, for some c ≥ c0, (1.4)

where c0 is a constant positive scalar (the exact value of c0 is problem dependent). Under these
conditions, as t → ∞, the transition probability of X (t) converges (weakly) to a probability
measure �. The latter, has its support on the set of global minimizers. A characterization of
� was given by Hwang in [10]. It was shown that � is the weak limit of the following, so
called, Gibbs density:

p(t, x) =
[

exp

{
− f (x)

T (t)

}] [∫

Rn
exp

{
− f (x)

T (t)

}
dx

]−1

. (1.5)

Discussion of the conditions for the existence of �, can be found in [10]. A description of
� in terms of the Hessian of f can also be found in [10].

The process in (1.3), was extended to handle linear constraints in [18]. Where the following
projected SDE was studied:

d X (t) = P[−∇ f (X (t)) + µX (t)−1]dt + √
2T (t)Pd B(t), (1.6)

where A is the matrix associated with the linear constraints, and P = I − AT (AAT )−1 A.
The µX (t)−1 term arises from the interior point methodology adopted in [18].

Theoretical work on the convergence of (1.3) to the global minimum of f , appeared in
[4,6,7]. In [6], the convergence of (1.3) was established for the special case of f defined on
a compact set. This assumption was lifted in [4], and in [7]. Analysis of the method when
only noisy measurements of the function, and its gradient are available, was given in [5],
and [11]. Numerical experience with (1.3) was reported in [1,2,15,17–19]. From numerical
experience reported in [19] and [15], it appears that the method compares favorably with
other stochastic methods. To the authors’ knowledge, there appears to be very little work
on extending this useful method to the constrained case. The contribution of this paper is
to extend the algorithm described above to the general non-linearly constrained set of prob-
lems. The analysis exploits the fact that SDEs and Partial Differential Equations (PDEs),
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are closely intertwined. The link we shall exploit in this work is provided by Kolmogorov’s
forward equation. This PDE is also known as the Fokker-Planck equation. Gidas [7] first
proposed to study the asymptotic behavior of the Fokker-Planck equation in order to estab-
lish the convergence of the method described above. In Sect. 4 we apply his technique of
studying the asymptotic behavior of the PDE associated with an unconstrained system of
SDEs, to the constrained case. Numerical integration of the projected SDE, details of our
implementation and numerical results are discussed in our recent work [15,17].

We end this section by fixing some notation that will be used in the rest of this paper.
The dimensions of the various gradients associated with our problem are assumed to be as
follows: ∇gi ∈ R

1×n , i = 1, . . . , m, ∇g ∈ R
m×n, ∇ f ∈ R

n×1. We will also make use of
the Laplacian of the constraints:

�gi =
n∑

j=1

∂2gi

∂x2
j

.

By �g ∈ R
m , we denote the vector of Laplacians associated with the constraints. B will be

used to represent an n-dimensional Brownian motion:

B = {B(t) = [B1(t), . . . , Bn(t)]T , F(t), t ≥ 0},
on the probability space (�,�, P).

2 The augmented SDE

According to the algorithmic framework adumbrated in the introduction, we could obtain a
solution to our problem by following the trajectory of (1.3). In order to enforce the constraints
into our SDE we propose to compute the minimum force we need to add to (1.3) so that X (t)
will satisfy the constraints. In other words, we need to find a Z(t) such that if X (t) is defined
by:

d X (t) = −∇ f (X (t))dt + √
2T (t)d B(t) + Z(t)dt,

then g(X (t + s)) = 0, provided that g(X (t)) = 0 a.s.1 In [18] when we only had to deal
with linear constraints, Z was given by:

−
t+s∫

t

Z(u)du =
t+s∫

t

(AT (AAT )−1 A)(−∇ f (X (u)))du

+
t+s∫

t

√
2T (u)(AT (AAT )−1 A)d B(u).

Unfortunately, for the general case, Z must depend on the current point X (t), and is not easy
to derive. For this reason we introduce information from the Lagrangian in order to enforce
feasibility. It will be shown later (Theorem 2.2) that the Lagrange multipliers can be suitably
defined so that feasibility is enforced.

The augmented SDE we study is given by:

d X (t) = −∇ f (X (t)) − ∇g(X (t))T λ(X (t), t)dt + √
T (t)d B(t) (2.1)

1 It will be clear from the context when a statement will hold almost surely. Henceforth, we drop the a.s
qualification from relevant statements.
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where:

λ(x, t) � [∇g(x)∇g(x)T ]−1[g(x) + T (t) � g(x) − ∇g(x)∇ f (x)]. (2.2)

The intuition behind (2.1) is as follows: the first term tries to move along a direction in which
f is reduced. The second term enforces feasibility. The last tern ensures that we will not get
trapped in local minima.

Note that the Lagrange multipliers are similar to the ones used in gradient projection
methods [13,14]. The only difference is the inclusion of the Laplacian term in order to take
into consideration the second order variation from the Brownian motion. The Lagrangian at
time t will be denoted by:

L(x, t) � f (x) + λ(x, t)T g(x)

We now state the assumption that will be used in the rest of this paper.
Assumptions

1. f , g and λ are twice continuously differentiable.
2. The matrix ∇gi (x)∇gi (x)T is linearly independent for all x .
3. The transition measure of X (t) has a density pt (x, y) i.e. that:

E x [h(Xt )] =
∫

h(y)pt (x, y)dy h ∈ C2

4. exp
(
−L(x,t)

T (t)

)
∈ L2

5. L(x, t) is uniformly bounded in (Rn × R).
6. There exists a T0 such that:

∇g(x(t))∇λ(x(t), t) 	= I,∀t ≥ T0, x(t) ∈ {y ∈ R
n | ∇L(y, t) = 0}.

Lemma 2.1 Let {τm} denote the sequence of first exit times of X (t) from balls of radius m
about the origin. As m goes to infinity, we denote the limit of {τm} by τ∞. For the process
defined in (2.1)

P(τ∞ < ∞) = 0

Proof Under our assumptions, this is a direct consequence of existence and uniqueness
results for SDEs, see for example Theorem 5.2.1 in [16]. ��
Theorem 2.2 There exists a t0 such that:

lim
t→∞ gi (X (t)) = 0 P-a.s. i = 1, . . . , m. (2.3)

Proof From (2.1) and Itô’s Lemma, and the definition of λ we have:

dgi (X (t)) = −∇gi (X (t))∇ f (X (t))dt − gi (X (t))dt − T (t) � gi (x)dt

+√
2T (t)∇gi (X (t))d B(t) + T (t) � gi (x)dt + ∇gi (X (t))∇ f (X (t))dt

= −gi (X (t))dt + √
2T (t)∇gi (X (t))d B(t). (2.4)

Let φ(t), denote the solution of the initial value problem:

dφ(t) = φ(t)dt, φ(0) = 1,
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and therefore φ(t) = et . Using Itô’s Lemma, and the fact that the quadratic variation of φ(t)
is zero, we have:

d[gi (X (t))φ(t)] = gi (X (t))dφ(t) + φ(t)dgi (X (t))

= √
2T (t)φ(t)∇gi (X (t))d B(t).

Using the preceding equation, we obtain:

gi (X (t)) = φ(t)−1

⎡

⎣gi (X (0)) +
t∫

0

√
2T (τ )φ(τ)∇gi (X (τ ))d B(τ )

⎤

⎦ .

Squaring and taking expectations with respect to P in the equation above, it follows by the
Itô isometry that:

E[gi (X (t))2] = φ(t)−2

⎡

⎣gi (X (0))2 + E

⎡

⎣
t∫

0

2T (τ )φ(τ)2∇Gi (X (τ ))dt

⎤

⎦

⎤

⎦ , (2.5)

where ∇Gi (x) = ∑

l
∇gi (x)2

l . By Lemma 2.1, the process X (t) does not explode in finite

time. Together with the continuity of ∇Gi , Lemma 2.1 implies that

∇Gi (X (t)) < c1 t < ∞,

for some finite scalar c1. Let ε > 0 be an arbitrary given constant, and choose t1 to be large
enough so that:

c1�

ln(3 + t1)
≤ ε

3
.

For such a t1 we have:

t∫

0

2T (τ )φ(τ)2∇Gi (X (τ ))dt =
t1∫

0

2T (τ )φ(τ)2∇Gi (X (τ ))dτ+
t∫

t1

2T (τ )φ(τ)2∇Gi (X (τ ))dτ

≤ c1�e2t1

ln(3)
+ c1�e2t

ln(3 + t1)

Using the relationship above, we obtain the following estimate: It follows from that (2.5)
that:

E[gi (X (t))2] ≤ e−2t gi (X (0))2 + c1�e2(t1−t)

ln(3)
+ c1�

ln(3 + t1)
(2.6)

Let t2, t3 be large enough so that:

e−2t2 gi (X (0))2 ≤ ε

3
; c1�e2(t1−t)

ln(3)
≤ ε

3
,

and define t0 = max{t2, t3}. Then it follows from (2.6) that:

E[gi (X (t))2] ≤ ε ∀t > t0,

which implies the result. ��
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3 Properties of the density

This section builds the foundation of the convergence proof by establishing a density that,
asymptotically, places positive mass only on the constrained global minima of the problem.
In the next section, we show that the transition density function of (2.1) (asymptotically)
behaves exactly like the density described in this section. The end result is that the stochastic
process that solves (2.1) only visits the constrained global minima of the problem.

Let H be the set of global optima:

H = {
x | x = arg min

y
{ f (y) | g(y) = 0}}.

Our aim is to introduce a probability measure �, such that �(x) > 0 if x ∈ H , and zero
otherwise. A natural way to define such a measure is by using Laplace’s method [3,10]. The
latter, is a useful technique to study the asymptotic behavior of integrals. Hwang [10] was
first to propose the applicability of the Laplace method for defining a probability measure
with the desired properties. In [18] the method was extended to cover constrained problems.
The aim here is to specialize the method to the Lagrangian formulation proposed in this
paper. We start with two Lemmas that will be useful later on.

Lemma 3.1 Let xl(t) be any local minimum of L(x, t), and suppose that lim
t→∞ xl(t) = xl .

Then

lim
t→∞ g(xl(t)) = 0.

Proof Since L(x, t) is twice consciously differentiable and bounded, it achieves its local
minimum at a point xl such that:

∇ f (xl(t)) + ∇g(xl(t))
T λ(xl(t), t) + ∇λ(xl(t), t)g(xl(t)) = 0.

Multiplying the preceding equation with ∇g(xl), we obtain:

(I − ∇g(xl(t))∇λ(xl(t), t))g(xl(t)) = −T (t) � g(xl(t)).

Let ε > 0, be any arbitrary given scalar. Let t0 be large enough so that assumption 6 is
satisfied. Then there must exist a t1 > t0 such that:

|T (t) � g(xl(t))| ≤ ε ∀t > t1

(I − ∇g(xl(t))∇λ(xl(t), t)) = c(t) 	= 0 ∀t > t1

Therefore,

lim
t→∞

∑

i

ci j (xl(t), t)g j (xl(t)) = 0 j = 1, . . . , m,

where ci j (x, t) = [I − ∇g(x)∇λ(x, t)]i j . By assumption 6 we must have:

lim
t→∞

∑

i

ci j (xl(t), t) = c j 	= 0.

The preceding limit implies the result since we have:

0 = c j lim
t→∞ g j (xl(t)).

��

123



J Glob Optim (2009) 45:95–110 101

Lemma 3.2 Let:

L(x) = f (x) + λ(x)T g(x),

where

λi (x) = [∇gi (x)∇gi (x)T ]−1[gi (x) − ∇gi (x)∇ f (x)] i = 1, . . . , m.

Then x̂ is a global minimum of (1.1) if and only if x̂ is a global minimum of L(x).

Proof Suppose that x̂ is the global minimum of L(x). We first show that x̂ is feasible in (1.1).
Indeed, since x̂ is a global minim of L(x) it must also satisfy:

∇L(x̂) = ∇ f (x̂) + ∇g(x̂)λ(x̂) + ∇λ(x̂)∇g(x̂) = 0.

Multiplying the preceding equation by ∇g(x̂), we obtain:

(I + ∇λ(x̂)∇g(x̂))g(x̂) = 0.

By assumption ∇λ(x̂)∇g(x̂) 	= −I , which implies that g(x̂) = 0. Moreover, since x̂ is a
global minimum of L we also have that:

f (x̂) ≤ f (x) + λ(x)T g(x) ∀x .

Suppose that there exists an x1 such that:

f (x1) < f (x̂) and g(x1) = 0.

Then,

f (x̂) > f (x1) = f (x1) + λ(x1)
T g(x1),

contradicting that x̂ is a global minimum of L. We conclude that x̂ must also be a global
minimum of (1.1).

For the reverse direction, suppose that x̂ is a global minimum of (1.1). Suppose that x̂ is
not a global minimum of L, and let x1 be any global minimum of L. Then we must have:

f (x1) + λ(x1)
T g(x1) < f (x̂) + λ(x̂)T g(x̂).

The same argument as in the beginning of the proof can be used to show that g(x1) = 0, and
therefore we must have:

f (x1) < f (x̂) g(x1) = 0,

contradicting that x̂ is the global minimum of (1.1). ��
Lemma 3.3 Let x∗(t) be any global minimum of L(x, t), and suppose that lim

t→∞ x∗(t) = x∗.

Furthermore, assume that L(x, t) has compact support. Then,

lim
t→∞ −T (t) ln c(t) = P∗.

Where

c(t) =
∫

exp

(
1

T (t)
( f (x) + λ(x, t)T g(x))

)
d�(x)
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Proof Let x∗(t) be a global minimum of L(x, t). Then there must exist a scalar β(t) > 0,
so that:

H(β(t), t) =
{

x ∈ K | β(t) exp

(
− 1

T (t)
( f (x∗(t)) + λ(x∗(t))g(x∗(t)))

)

≤ exp

(
− 1

T (t)
( f (x) + λ(x)g(x))

)
, 0 < β(t) < 1

}
,

where K is some compact subset of R
n . Using the property above, we can obtain the following

estimate:
∫

exp

(
−L(x, t)

T (t)

)
d�(x)

=
∫

H(β(t),t)

exp

(
−L(x, t)

T (t)

)
d�(x) +

∫

H(β(t),t)

exp

(
−L(x, t)

T (t)

)
d�(x)

≥ �(H(β(t), t))β(t) exp

(
− 1

T (t)
( f (x∗(t)) + λ(x∗(t))g(x∗(t)))

)
.

Let S(t) denote the support of L(x, t), which by assumption is compact. Using the estimate
above, we obtain:

�(H(β(t), t))β(t) exp

(
−L(x∗(t), t)

T (t)

)

≤
∫

exp

(
−L(x, t)

T (t)

)
d�(x)

≤ �(S(t)) exp

(
−L(x∗(t), t)

T (t)

)
.

The preceding equation implies that:

T (t) ln �(H(β(t), t))β(t)+L(x∗(t), t)≥ − T (t) ln c(t)≥T (t) ln �(S(t))+L(x∗(t), t).(3.1)

By the continuity of L(x∗(t), t), and Lemma 3.2 we have:

lim L(x∗(t), t) = L(x∗) = P∗.

Since �(H(β(t), t))β(t) and �(S(t)) are bounded, and T (t) tends to zero, taking the limit
as t → ∞ in (3.1) the desired result is obtained. ��

Motivated by the result above, and by the results concerning the unconstrained case from
[10]. We consider the following Radon-Nikodym derivative as the starting point for our
definition:

d Pt

d�
=

exp
{
− 1

T (t) ( f (x) + λ(x, t)T g(x))
}

∫
exp

{
− 1

T (t) ( f (x) + λ(x, t)T g(x))
}

d�(x)
. (3.2)

Where � is some probability measure on (Rn, B). The rest of this Section is devoted to the
study of Pε as ε approaches zero. The results presented here are extensions of the results
from [10,18].
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Lemma 3.4 Let κ(t) be defined as follows:

κ(t) = min L(x, t),

and suppose that κ(t) belongs to a compact set. Then the sequence Pt is tight.

Proof In order to show that the sequence is tight, we need to find a compact set K , such that:

Pt (K ) > 1 − δ ∀δ > 0.

Let δ1 > 0 be an arbitrary given constant, then the following estimate can be obtained:

Pt (L(x, t) > δ1 + κ(t)) =
∫

L(x,t)
>δ1+κ(t)

exp

{
−L(y, t)

T (t)

}
d�(y)

[∫
exp

{
−L(y, t)

T (t)

}
d�(y)

]−1

≤ �(L(x, t) > δ1 + κ(t))e− δ1+κ(t)
T (t)

[∫
exp

{
−L(y, t)

T (t)

}
d�(y)

]−1

≤
[∫

exp

{
−L(y, t) − δ1 − κ(t)

T (t)

}
d�(y)

]−1

≤

⎡

⎢
⎢
⎣

∫

L(x,t)
>δ1+κ(t)

exp

{
−L(y, t) − δ1 − κ(t)

T (t)

}
d�(y)

⎤

⎥
⎥
⎦

−1

.

The preceding equation implies that:

lim
t→∞ Pt (L(x, t) > δ1 + κ(t)) = 0.

Note that the set:

K (t) = {x | L(x, t) ≤ δ1 + κ(t)},
is compact. Moreover since κ(t) belongs to some compact set, there must exist a κ such that,
κ(t) ≤ κ . The we can define a compact set K as follows:

K = {x | L(x, t) ≤ δ1 + κ},
Therefore, given any δ, then there exists a T , such that:

Pt (K (t)) ≥ 1 − δ2 ∀t > T .

Noting that K (t) ⊆ K , we also have:

Pt (K ) ≥ Pt (K (t)) ≥ 1 − δ2 ∀t > T,

as required. ��
Corollary 3.5 {Pε} has a subsequence that weakly converges to �, and the latter has its
support in H.

Proof The first part follows from Proposition 3.4, and Prokhorov’s theorem. The second part
is a consequence of Proposition 3.3. ��

It is possible to get an explicit equation for Pε . Such an analysis was carried out in [18].
Since the explicit form of Pε is not used in the proof we just state the Theorem. The same
proof found in [18] can easily be adapted to fit the assumptions of this paper.
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Proposition 3.6 Assume that H, the set of constrained global minima of (1.1), consists of
a finite number of points:

H = {x1, x2, . . . , xm}.

Suppose that each xi ∈ H, satisfies the second order KKT conditions for local optimality:

∇ f (xi ) + νT
i ∇g(xi ) = 0

νi j g j (xi ) = 0 j = 1, . . . , l

g(xi ) ≤ 0 νi ≥ 0

dT

⎡

⎣∇2 f (xi ) +
l∑

j=1

νi j∇2g(xi )

⎤

⎦ d > 0

∀d ∈ M = {y | ∇g(xi )
T y = 0, } i = 1, . . . , m,

where νi denotes the Lagrange multiplier vector associated with the ith minimizer. Let dx
denote the Lebesgue measure on (Rn, B), and suppose that there exists a continuous function
h such that h(xi ) > 0, and d�

dx (·) = h(·). Then:

lim
ε↓0

Pε(xi ) =
h(xi ) det

[

∇2 f (xi ) +
l∑

j=1
νi j∇g j (xi )

]−1/2

m∑

k=1
h(xk) det

[

∇2 f (xk) +
l∑

j=1
νk j∇g j (xk)

]−1/2 � π(xi ).

4 Convergence

In this section we complete the convergence proof of the proposed method. The argument is
based on the asymptotic analysis of the Fokker-Planck PDE (see (4.1)). This type of analysis
was initiated by Gidas in [7–9]. The results given here are based on the unconstrained proof
given in [9], and the linearly constrained case in [18].

It is well known that, under some regularity assumptions, the transition density function
of (2.1) satisfies the following PDE:

∂p(x, t)

∂t
= A∗ p(x, t) =

∑

i

∂

∂xi

⎡

⎣

⎛

⎝∂ f (x)

∂xi
+

∑

j

∂g j (x)

∂xi
λ j (x, t)

⎞

⎠ p(x, t)

⎤

⎦

+ T (t)
∑

i

∂2 p(x, t)

∂x2
i

(4.1)

This PDE is known as the Fokker-Planck or Kolmogorov’s forward equation. We will assume
that the process commenced from a feasible point. We therefore use the following initial con-
dition:

lim
t↓0

p(x0, 0, xt , t) = δ(x − x0), x0 ∈ F .
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In addition to the forward PDE, the SDE in (2.1) has the following (infinitesimal) generator
associated with its dynamics:

Ap(x, t) =
∑

i

⎛

⎝∂ f (x)

∂xi
+

∑

j

∂g j (x)

∂xi
λ j (x, t)

⎞

⎠ ∂p(x, t)

∂xi
+ T (t)

∑

i

∂2 p(x, t)

∂x2
i

(4.2)

Where note that A∗ is the adjoint of A.
Motivated by the results of the previous sections we will use the following density as a

trial solution to our PDE:

θ(x, t) =
exp

(
− 1

T (t)

(
f (x) + λ(x, t)T g(x)

))

Z(t)
, (4.3)

where,

Z(t) =
∫

exp

(
− 1

T (t)

(
f (y) + λ(y, t)T g(y)

))
dy. (4.4)

The aim is to show that, asymptotically, (4.3) solves (4.1). For later use note that:

∂θ

∂xi
= − 1

Z(T )T (t)

⎛

⎝ ∂ f

∂xi
+

∑

j

∂g j

∂xi
λ j (x, t) +

∑

j

∂λ j

∂xi
g j (x)

⎞

⎠ (4.5)

Finally, the CDF of p will be denoted by:

�(xs, s, B, t) =
∫

B
p(xs, s, y, t)dy.

where p is the solution to (4.1).

Lemma 4.1 Suppose that k, h ∈ C2, and that they have their support in F . Then, on
(L2, θdx), the following holds:

〈k, Ah〉 = −T (t)
∫

θ(t, x)
∑

i

∂k

∂xi

∂h

∂xi
dx

Proof Note that

T (t)

θ(t, x)

∑

i

∂

∂xi

(
θ(t, x)

∂h

∂xi

)
+

∑

i

∂h

∂xi

⎛

⎝
∑

j

∂λ j

∂xi
g j (x)

⎞

⎠

= T (t)
∑

i

∂2h

∂x2
i

−
∑

i

∂h

∂xi

⎛

⎝ ∂ f

∂xi
+

∑

j

∂g j

∂xi
λ j

⎞

⎠

= Ah. (4.6)

Where to obtain the above relationship we used (4.5). It follows that:

〈k, Ah〉 =
∫

T (t)k(x)
∑

i

∂

∂xi

(
θ(t, x)

∂h

∂xi

)
dx

+
∫

k(x)

⎛

⎝
∑

i j

∂h

∂xi

∂λ j

xi
g j (x)

⎞

⎠ θ(t, x)dx . (4.7)
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The second integral in the equation must be zero, since k has its support in F . Integrating by
parts the first integral, and noting that k has its support in a compact set, we obtain:

〈k, Ah〉 = −T (t)
∫

θ(t, x)
∑

i

∂k

∂xi

∂h

∂xi
dx, (4.8)

as required. ��

Lemma 4.2 Suppose that p satisfies the PDE in (4.1). Then for t large enough, there exists
a function with its support in F , such that p can be written as:

p(t, x) = η(t, x)θ(t, x).

Proof From Theorem 2.2 it follows that, for t large enough, π(t, B) will have its support in
F . Let, η(t, x) = p(t, x)/θ(t, x). Clearly, for t large enough, η will have its support in F .
Therefore, the solution to (4.1), can be written as: p(t, x) = η(t, x)θ(t, x). ��

Lemma 4.3 Let η(t, x) ∈ C2 be any function with its support in F . Then,

∫
θ(t, x)

∑

i

(
∂η

∂xi

)2

dx ≥ �(t)Q(K (t))
∫

η(t, x)2dx,

where 0 < �(t) < ∞, and Q, is some strictly positive constant depending on a compact set
K (t).

Proof Since, η(t, x) vanishes outside a compact set, it follows that its derivative also van-
ishes outside a compact set. Let the latter set be denoted by K1(t), and let K (t) = K1(t)∪F .
Let,

�(t) = min
x∈K (t)

θ(t, x),

and note that, 0 < �(t) < ∞. The following bound can then be obtained:

∫
θ(t, x)

∑

i

(
∂η

∂xi

)2

dx ≥ �(t)
∫

K (t)

∑

i

(
∂η

∂xi

)2

dx

≥ �(t)Q(K (t))
∫

K (t)
η(t, x)2dx

= �(t)Q(K (t))
∫

η(t, x)2dx,

where the second inequality was obtained by an application of the Poincare inequality. ��

Lemma 4.4 Let p denote the solution of (4.1), and let η be a C2 function with its support
in F . Then:

θ(t, x)−1A∗ p = Aη + N (t, x), (4.9)
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where:

N (t, x) = −2
∑

i j

∂λ j

∂xi
g j (x) − η(t, x)

∑

i j

∂g j

∂xi

∂λ j

∂xi

−
∑

i j

∂2λ j

∂xi
g j (x)η(t, x) + η(t, x)

T (t)

∑

i j

(
∂λ j

∂xi
g j (x)

)2

−η(t, x)

T (t)

∑

i

⎛

⎝ ∂ f

∂xi
+

∑

j

∂g j

∂xi
λ j (x, t)

⎞

⎠

⎛

⎝
∑

j

∂λ j

∂xi
g j (x)

⎞

⎠

Moreover,
∫

N (t, y)dy = 0.

Proof Let p, and θ satisfy the conditions stated in the Theorem, and note that from Lemma
4.2 we have the following:

p(t, x) = η(t, x)θ(t, x). (4.10)

This proof is by direct calculation and we omit the details. In order to obtain the required
expression, one proceeds as follows: calculate the first and second derivatives of θ with
respect to x , and substitute the formulae obtained into θ(t, x)−1A∗ p. The (rather long)
resulting expression can be simplified to (4.9) when one uses the parametrization in (4.10).

To prove the last statement we also proceed by direction calculation using integration by
parts. ��

Theorem 4.5 Supposed that the diffusion term in (2.1) is given by:

T (t) = c

ln(3 + t)
, (4.11)

for some constant c. Furthermore, let p denote the solution of (4.1), so that:

�(x0, 0, B, t) =
∫

B

p(x0, 0, y, t)dy,

where B is any Borel set in R
n. Let r be any bounded and continuous function, then

lim
t→∞

∫

B

r(x)p(x0, 0, y, t)dy =
∫

B

r(x)θ(t, y)dy,

where θ is the density function of a probability measure that assigns all its mass to the global
minima of (1.1).

Proof Let p, and θ satisfy the conditions stated in the Theorem, and note that from Lemma
4.2 we have the following:

p(t, x) = η(t, x)θ(t, x). (4.12)
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Using the relationship above, the following bound can be derived:
∣
∣
∣
∣

∫
r(y)p(t, y)dy −

∫
r(y)θ(t, y)dy

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
r(y)[θ(t, y)η(t, y) − θ(t, y)]dy

∣
∣
∣
∣

=
∣
∣
∣
∣

∫
r(y)

√
θ(t, y)

√
θ(t, y)[η(t, y) − 1]dy

∣
∣
∣
∣

≤
(∫

r(y)2θ(t, y)dy

) 1
2
(∫

θ(t, y)(η(t, y) − 1)2dy

) 1
2

.

Let:

�(t) �
∫

π(t, y)(η(t, y) − 1)2dy.

The result would follow if �(t) vanishes for t large enough. This is what we show next. The
plan of the proof is to find a useful form for the derivative of �(t). We then show that, for
large t , this derivative is negative. We well then show, that this condition alone is enough to
guarantee that �(t) will eventually reach its lower bound. The lower bound is by construction
zero.

In order to implement the plan outlined above, we will first need to place the derivative
of �(t) in a convenient form. We will need the following derivatives:

dλi (x, t)

dt
= ci (x, t)

dT (t)

dt
,

where ci (x) = [(∇g(x)∇g(x)T )−1 � g(x)]i , i = 1, . . . , m. It can easily be seen that:

dZ(t)

dt
= − 1

T (t)2

dT

dt

∫
�(t, x) exp(L(y, t))dy,

where,

�(t, x) = −L(x, t) + T (t)c(x, t)T g(x).

By direct calculation we find:

∂θ

∂t
= dT

dt

θ(t, x)

T (t)2 (〈�(t)〉 − �(t, x))

where,

〈�(t)〉 = 1

Z(t)

∫
�(t, y) exp

(L(y, t)

T (t)

)
dy.

It follows from (4.12), that:

�(t) =
∫

θ(t, y)η(t, y)2dy − 1.

Using the preceding equation, and Lemma 4.4, the following estimate can be made:

1

2

d�

dt
=

∫
θ(t, y)η(t, y)

∂η

∂t
dy − 1

2

∫
η(t, y)2 ∂θ(t, y)

∂t
dy

=
∫

θ(t, y)η(t, y)Aη(t, y) + N (t, y)dy

− 1

2T (t)2

dT

dt

∫
θ(t, y)η(t, y)2(〈�(t)〉 − �(t, y))dy (4.13)
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Using Lemma 4.3, on the weighted space (Rn, θdx), we can bound the first term above as
follows:

∫
θ(t, y)η(t, y)Aη(t, y)dy = −T (t)

∫
θ2(t, y)

∑

i

(
∂η

∂xi

)2

dy

≤ −c1T (t)
∫

η(t, y)2θ(t, y)dy

≤ −c1T (t)(�(t) + 1)

≤ −c1T (t)�(t) (4.14)

For some constant c1 that only depends on F . The second term in (4.13) can be reorganized
as follows:

1

2T (t)2

dT

dt

∫
θ(t, y)η(t, y)2(〈�(t)〉 − �(t, y))dy

= 1

2T (t)2

dT

dt

∫
(〈�(t)〉 − �(t, y))θ(t, y)(η(t, y) − 1)2dy

+ 1

T (t)2

dT

dt

∫
(〈�(t)〉 − �(t, y))(η(t, y)θ(t, y) − 1)dy

≤ 1

T (t)2

dT

dt

(
c2

∫
θ(t, y)(η(t, y) − 1)2dy + c3

∫
θ(t, y)|η(t, y) − 1|dy

)

≤ c4

T (t)2

dT

dt

( ∫
θ(t, y)(η(t, y) − 1)2dy +

√∫
θ(t, y)(η(t, y) − 1)2dy

)

= c4

T (t)2

dT

dt

(
�(t) + √

�(t)

)
(4.15)

Using (4.14) and (4.15) in (4.13) we finally obtain:

∂�(t)

∂t
≤ −c1T (t)�(t) − c4

T (t)2

dT

dt

(
�(t) + √

�(t)

)
. (4.16)

It follows that for t large enough we must have:

∂�(t)

∂t
≤ 0

It follows that if t is large enough �(t) is a monotonically decreasing sequence that is bounded
from below. Note that we made use of the fact that T (t) has the functional form given by
(4.11), and that its first derivative is negative. Eventually, for some tc we must have:

∂�(tc)

∂t
= 0.

It follows that,

∂�(t)

∂t
= 0.∀t ≥ tc

then,

0 ≤ �(t) ≤ c4

T (t)3

dT

dt

(
�(t) + √

�(t)

)
≤ c5

T (t)3

dT

dt

The r.h.s. goes to zero as t → ∞. Therefore for t large enough � is zero, as required. ��
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5 Conclusions

We discussed a stochastic algorithm for the solution of a general class of global optimization
problems. We showed that the transition density associated with the stochastic differential
equation used to specify the algorithm converges weakly to a density that assigns positive
mass only to the global minima of the problem. The numerical integration the SDE, details
of our implementation and numerical results can be found in [15,17].
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